Control Strategy for the Energy Optimization of Hybrid Regenerative Braking Energy Utilization System Used in Electric Locomotive

Author:

Yan Jiande12ORCID,Wang Hui1,Zhong Shuren1,Lan Yonghong3ORCID,Huang Keyuan1

Affiliation:

1. School of Electrical and Information Engineering, Hunan University, Changsha, Hunan 410082, China

2. College of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan, Hunan 411100, China

3. School of Information Engineering, Xiangtan University, Xiangtan 411105, Hunan, China

Abstract

The braking process of electric locomotive is featured by short braking time, large braking power, large voltage fluctuations, etc. Faced with the problem of low utilization of braking energy and high investment cost of the current regenerative braking energy utilization systems, an energy optimization scheme is proposed in this paper by combining the control strategy for energy storage and energy optimization. The regenerative braking energy utilization system is modeled by analyzing the braking process of electric locomotive. The instantaneous absorption reference powers of the energy storage subsystem and energy feedback subsystem in braking process are obtained according to the established mathematical model. The energy storage subsystem uses super capacitor and adopts a power-current dual closed-loop control strategy. The energy feedback subsystem adopts a voltage-current dual closed-loop control strategy. Through the tracking control of the instantaneous power, a reasonable distribution of the regenerative braking energy is achieved between the energy feedback subsystem and energy storage subsystem, thereby increasing the utilization efficiency of the two subsystems. Finally, the performance of the proposed scheme is verified by simulation and experiment.

Funder

Science and Technology Research Project for Strategic Emerging Industry of Hunan Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3