Sonic Hedgehog Promotes Proliferation and Migration of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via Rho/ROCK Signaling

Author:

Hu Zaiying1ORCID,Chen Yingdi1ORCID,Zhu Shangling1ORCID,Feng Xiaoxue1ORCID,Zhang Baiyu1ORCID,Huang Jianlin1ORCID

Affiliation:

1. Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

Abstract

Objective. To explore the underlying mechanism of the sonic hedgehog (Shh) signaling pathway in promoting cell proliferation and migration in fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA). Method. FLS were collected from 8 patients with RA and 3 patients with osteoarthritis (OA). The expression of smoothened (Smo, the Shh pathway activator) was quantified by real-time PCR and western blot. FLS were incubated with cyclopamine (a Smo antagonist), purmorphamine (a Smo agonist), Y27632 (a Rho/ROCK signaling inhibitor), or a combination of purmorphamine and Y27632, respectively. Cell proliferation was examined using cell counting kit-8 and cell cycle assays while cell migration was measured with Transwell and wound healing assays. Results. The expression of Smo was higher in FLS from RA patients than from OA patients ( p < 0.05 ). RA-FLS treated with purmorphamine showed significantly activated proliferation (119.69 vs. 100.0) and migration (252.38 vs. 178.57) compared to untreated cells (both p < 0.001 ). RA-FLS incubated with cyclopamine or a combination of purmorphamine and Y27632 exhibited significant suppression of proliferation (81.55 vs. 100.0 and 85.84 vs. 100.0) and migration (100 vs. 178.57 and 109.52 vs. 185) ability (all p < 0.001 ). Conclusion. Our results demonstrated that Shh promoted cell growth and migration of FLS in RA patients through the Rho/ROCK signaling pathway.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3