Proposing Lane and Obstacle Detection Algorithm Using YOLO to Control Self-Driving Cars on Advanced Networks

Author:

Huu Phat Nguyen1ORCID,Pham Thi Quyen1,Tong Thi Quynh Phuong1

Affiliation:

1. School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam

Abstract

Developing self-driving cars is an important foundation for the development of intelligent transportation systems with advanced telecommunications network infrastructure such as 6G networks. The paper mentions two main problems, namely, lane detection and obstacle detection (road signs, traffic lights, vehicles ahead, etc.) through image processing algorithms. To solve problems such as low detection accuracy of traditional image processing methods and poor real-time performance of methods based on deep learning methods, lane and object detection algorithm barriers for smart traffic are proposed. We first convert the distorting image caused by the camera and use a threshold algorithm for the lane detection algorithm. The image with a top-down view is then determined through the extraction of a region of interest and inverse perspective transform. Finally, we implement the sliding window method to determine pixels belonging to each lane and adapt it to a quadratic equation. YOLO algorithm is suitable for identifying many types of obstacles for identification problems. Finally, we use real-time videos and the TuSimple dataset to perform simulations for the proposed algorithm. The simulation results show that the accuracy of the proposal for detecting lanes is 97.91% and the processing time is 0.0021 seconds. The accuracy of the proposal for detecting obstacles is 81.90%, and the processing time is 0.022 seconds. Compared with the traditional image processing method, the average accuracy and execution time of the proposed method are 89.90% and 0.024 seconds, which is a strong antinoise ability. The results prove that the proposed algorithm can be deployed for self-driving car systems with a high processing speed of the advanced network.

Funder

Ministry of Education and Training

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3