Investigation of Chemical Treatments to Enhance the Mechanical Properties of Natural Fiber Composites

Author:

Rauf Farooq1,Umair Muhammad1ORCID,Shaker Khubab1ORCID,Nawab Yasir1ORCID,Ullah Tehseen1,Ahmad Sheraz1ORCID

Affiliation:

1. School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan

Abstract

A sustainable approach to composites is leading to the use of natural fibers rather than synthetic materials, like carbon or glass, for reinforcement. However, the higher moisture absorption of natural fibers impairs the composite’s mechanical properties. Therefore, to improve the mechanical properties, some chemical treatments like silane and fluorocarbon can be performed to reduce the moisture absorption of natural fibers. In this study, flax was used as reinforcement, and epoxy was used as a matrix. In the first part of the study, flax reinforcement was treated with different concentrations of silane (20, 40, and 60 g/L) and fluorocarbons (80, 100, and 120 g/L). Moisture regains (MRs), absorbency, and tensile strength were measured at reinforcement levels. According to the results, reinforcements treated with 60 g/L silane (S3) and 120 g/L fluorocarbons (F3) exhibited the lowest MR values of 7.09% and 3.06%, respectively, whereas water absorbency was significantly reduced. The sample treated with 120 g/L fluorocarbons required 300 seconds extra time to absorb the water as compared with the untreated sample, whereas samples S3 and F3 showed an increase in tensile strength by 20.16% and 34.80% when compared with untreated reinforcement flax reinforcement. In the second part of the study, untreated and treated flax reinforcements were combined with an epoxy matrix for composite fabrication. MR and mechanical tests (tensile, flexural, and Charpy impact tests) were performed. Results revealed that treated flax-reinforced composites exhibited lower MR values 0.86% for F3 and 0.42% for S3, respectively. The tensile, flexural, and pendulum impact strengths of silane-treated reinforced composite sample C.S3 were increased by 15.07%, 117%, and 20.01%, respectively, compared with untreated reinforced composite samples. Consequently, both chemical treatments improve composite mechanical performance as well as service life.

Funder

Higher Education Commission, Pakistan

Publisher

Hindawi Limited

Subject

Polymers and Plastics

Reference43 articles.

1. Identification of textile fibers

2. Agro-waste capsicum annum stem: an alternative raw material for lightweight composites;A. Vinod;Industrial Crops and Products,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3