Proanthocyanidins Antagonize Arsenic-Induced Oxidative Damage and Promote Arsenic Methylation through Activation of the Nrf2 Signaling Pathway

Author:

Xu Mengchuan1ORCID,Niu Qiang1,Hu Yunhua1,Feng Gangling1,Wang Haixia1,Li Shugang1ORCID

Affiliation:

1. Department of Public Health, Medical College, Shihezi University, 832000 Xinjiang, China

Abstract

Purpose. To investigate the effects of grape seed proanthocyanidin extract (GSPE) on oxidative damage and arsenic (As) methylation and to clarify the role of Nrf2 in the process. Methods. L-02 cells were treated with arsenic (25 μM) and GSPE (10, 25, and 50 mg/L) for 24 h. Cell viability was analyzed by MTT assay. Cell apoptosis and ROS fluorescence were detected by flow cytometry. Oxidative stress marker levels were measured using commercial kits. mRNA and protein expression were detected by qRT-PCR and western blotting. The cellular concentrations of methylation products were measured by HPLC-HGAFS. Arsenic methylation ability of cells was determined. Results. Cell survival rate was significantly lower in the As group than in the control group (P<0.05), while cell apoptosis increased and the number of apoptotic cells decreased gradually after GSPE intervention. Superoxide dismutase, glutathione, and sulfhydryl levels in the intervention group were significantly higher (P<0.05), while MDA and ROS levels were significantly lower (P<0.05) than those in the As group. The mRNA and protein expression of Nrf2, HO-1, NQO1, and glutathione-S-transferase increased in the As + GSPE group compared with that in the As group (P<0.05). GSPE significantly increased methylated As level, primary methylation index, secondary methylation index, average growth rate of methylation, and average methylation speed compared with the GSPE untreated group (P<0.05). After Nrf2 inhibition, the effect of GSPE decreased significantly. Conclusion. GSPE activates the Nrf2 signaling pathway to antagonize As-induced oxidative damage and to promote As methylation metabolism. Therefore, GSPE may be a potential agent for relieving As-induced hepatotoxicity.

Funder

Shihezi University

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3