Analysis of College Students’ Public Opinion Based on Machine Learning and Evolutionary Algorithm

Author:

Zhang Jinqing1ORCID,Zhang Pengchao2ORCID,Xu Bin34ORCID

Affiliation:

1. School of Automation Science and Electrical Engineering, Beihang University, Beijing, China

2. Shaanxi Provincial Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China

3. Major Public Information Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an, China

4. School of Marxism, Northwestern Polytechnical University, Xi’an, China

Abstract

The recent information explosion may have many negative impacts on college students, such as distraction from learning and addiction to meaningless and fake news. To avoid these phenomena, it is necessary to verify the students’ state of mind and give them appropriate guidance. However, many peculiarities, including subject focused, multiaspect, and low consistency on different samples’ interests, bring great challenges while leveraging the mainstream opinion mining method. To solve this problem, this paper proposes a new way by using a questionnaire which covers most aspects of a student’s life to collect comprehensive information and feed the information into a neural network. With reliable prediction on students’ state of mind and awareness of feature importance, colleges can give students guidance associated with their own experience and make macroscopic policies more effective. A pipeline is proposed to relieve overfitting during the collected information training. First, the singular value decomposition is used in pretreatment of data set which includes outlier detection and dimension reduction. Then, the genetic algorithm is introduced in the training process to find the proper initial parameters of network, and in this way, it can prevent the network from falling into the local minimum. A method of calculating the importance of students’ features is also proposed. The experiment result shows that the new pipeline works well, and the predictor has high accuracy on predicting fresh samples. The design procedure and the prediction design will provide suggestions to deal with students’ state of mind and the college’s public opinion.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3