Assessing Alternative Scenarios for the Cause of Underpressures in the Ordovician Sediments along the Eastern Flank of the Michigan Basin

Author:

Normani Stefano D.1ORCID,Sykes Jonathan F.1,Jensen Mark R.2,Sykes Eric A.2

Affiliation:

1. Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1

2. Nuclear Waste Management Organization, 22 St. Clair Avenue East, 6th Floor, Toronto, ON, Canada M4T 2S3

Abstract

Geoscientific investigations for a proposed deep geologic repository at the Bruce Site, located on the eastern flank of the Michigan Basin, have identified unique and significant underpressured conditions. Along with the measurement of environmental tracer profiles (e.g., helium), this study aims to explore, through a series of numerical simulations, the nature of long-term phenomena responsible for the generation and preservation of formation underpressures. Three families of inverse numerical experiments for underpressure formation were examined by means of one-dimensional hydromechanically coupled models through the vertical hydrostratigraphic column: (i) uncertainty in glaciation scenarios; (ii) uncertainty in initial heads prior to glaciation; and (iii) uncertainty in the degree of hydraulic connectivity between the more permeable Guelph Formation at the Bruce Site and the applied glacial loading, for a total of 20 scenarios, assuming fully saturated conditions. Underpressured initial heads for the paleohydrogeologic simulations lead to lower calibrated vertical hydraulic conductivities. The robustness and resilience of the groundwater system to external perturbations are greater for the state where underpressured conditions predate the onset of glaciation and are better able to preserve the present day helium tracer profile in 260 Ma exhumation analyses.

Funder

Nuclear Waste Management Organization

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3