Identification of Microseismic Signals Based on Multiscale Singular Spectrum Entropy

Author:

Zhang Xingli1ORCID,Zhao Zhenhua1,Jia Ruisheng1,Cao Lianyue1

Affiliation:

1. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

The accurate identification of effective microseismic events has great significance in the monitoring, early warning, and forecasting of rockburst hazards. However, the conventional identification methods have displayed difficulties in achieving satisfactory results. A microseismic signal identification method which combines variational mode decomposition (VMD) and multiscale singular spectrum entropy was proposed in this paper. The original signal was firstly broken down into a given number K variational mode components, which are ranked by frequency in descending order. Then, the characteristic pattern matrix was constructed according to the mode component signals, and the identification model of the microseismic signals based on the support vector machine was built by performing a multiscale singular spectrum entropy calculation of the collected vibration signals, constructing eigenvectors of signals. Finally, a comparative analysis of the microseismic events and blasting vibration signals in the experiment proved that the different characteristics of the two kinds of signals can be fully expressed by using multiscale singular spectrum entropy. Experimental results further confirmed the effective identification performance of this proposed method.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference43 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3