Affiliation:
1. College of Mechanical Science and Engineering, Nanling Campus, Jilin University, Changchun 130025, China
Abstract
The moving least squares (MLS) method has been developed for the fitting of measured data contaminated with random error. The local approximants of MLS method only take the error of dependent variable into account, whereas the independent variable of measured data always contains random error. Considering the errors of all variables, this paper presents an improved moving least squares (IMLS) method to generate curve and surface for the measured data. In IMLS method, total least squares (TLS) with a parameterλbased on singular value decomposition is introduced to the local approximants. A procedure is developed to determine the parameterλ. Numerical examples for curve and surface fitting are given to prove the performance of IMLS method.
Funder
National High Technology Research and Development Program (863 Program) of China
Subject
General Engineering,General Mathematics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献