Utilizing Image Processing and the YOLOv3 Network for Real-Time Traffic Light Control

Author:

Segura Altamirano S. Francisco1ORCID,Castro Cárdenas Diana M.1ORCID,Sifuentes Montes Ayax M.2ORCID,Chaman Cabrera Lucia I.1ORCID,Lizana Puelles Esther Y.2ORCID,Rojas Coronel Angel M.3ORCID,De la Cruz Rodríguez Oscar M.4ORCID,Lara Romero Luis A.5ORCID

Affiliation:

1. Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Peru

2. Universidad Nacional de Piura, Piura, Peru

3. Universidad Señor de Sipan, Chiclayo, Peru

4. Antenor Orrego Private University, Trujillo, Peru

5. National University of Trujillo, Trujillo, Peru

Abstract

In this study, different strategies used to count vehicles and people in different image areas at a street intersection were analyzed to obtain counts at appropriate times suitable for real-time control of a traffic light. To achieve this, video recordings of cameras placed at the intersection were used to test and verify image processing algorithms and deep learning using the YOLOv3 network implemented on a 4 GB RAM Jetson Nano card. We counted the vehicles and people that stopped and crossed the polygons to delimit the different areas of interest, with a maximum error of ±2 in the validation tests for all cases. In addition, as a strategy, we combined the images from both cameras into a single one, thereby allowing us to make a single detection and subsequently determine if they are inside or outside the polygons used in separating the areas of interest with the respective counts. Furthermore, this enabled us to obtain information on vehicles and people stopped and crossing in a time of 0.73 s on average. Hence, it was established that the inclusion of the control algorithm is appropriate for real-time control of traffic lights.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3