Integrated Bioinformatics Analysis Reveals Function and Regulatory Network of miR-200b-3p in Endometriosis

Author:

Hu Wanxue1,Xie Qin1,Xu Yicong1,Tang Xin2ORCID,Zhao Hongbo13ORCID

Affiliation:

1. Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China

2. School of Rehabilitation, Kunming Medical University, Kunming 650500, China

3. Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming 650500, China

Abstract

Objective. MicroRNAs play vital roles in the development of endometriosis. It is reported that miR-200b-3p is downregulated in endometriosis, although its mechanisms in this disease remain still unclear. Therefore, the purpose of this study was to explore the function and potential regulatory network of miR-200b-3p in endometriosis through database analysis. Methods. The endometriosis gene expression profiles were downloaded from the GEO database to screen differentially expressed genes (DEGs). The predicted and validated target genes of miR-200b-3p were obtained from miRWalk and miRTarBase database. Then, a comparison was performed between miR-200b-3p target genes and DEGs. GO enrichment and KEGG pathway analysis of the target genes was performed using clusterProfiler package. STRING was used to predict the protein-protein interaction among the proteins encoded by the target genes. Then, TransmiR, LncBase, StarBase, PROMO, and AnimalTFDB were employed to identify interactive transcription factors and lncRNAs of miR-200b-3p. Results. miR-200b-3p was associated with the transcription factors DNMT1, EZH2, HNF1B, JUN, MYB, ZEB1, and ZEB2 during the pathogenesis of endometriosis. The downstream 110 target genes were involved in the biological processes of positive regulation of MAPK cascade, muscle cell proliferation, organ growth, vasculogenesis, and axon development. KEGG analysis revealed that the main pathways related to miR-200b-3p were microRNAs in cancer, PI3K-Akt signaling pathway, colorectal cancer, and tight junction. In addition, four lncRNAs such as MALAT1, NEAT1, SNHG22, and XIST interacted with miR-200b-3p and were associated with transcription factors FOXP3 and YY1. Conclusion. The predicted target genes and molecular regulatory network of miR-200b-3p in endometriosis not only revealed its biological function but also provided a valuable guideline for further research.

Funder

Joint Special Funds for the Department of Science and Technology of Yunnan Province-Kunming Medical University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3