Reservoir Inflow Prediction by Employing Response Surface-Based Models Conjunction with Wavelet and Bootstrap Techniques

Author:

Shehzad Muhammad Ahmed1ORCID,Bashir Adnan1ORCID,Noor Ul Amin Muhammad2ORCID,Khosa Saima Khan1,Aslam Muhammad3ORCID,Ahmad Zubair4ORCID

Affiliation:

1. Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan

2. Department of Statistics, COMSATS University Islamabad, Lahore Campus, Islamabad, Pakistan

3. Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21551, Saudi Arabia

4. Department of Statistics, Yazd University, P.O. Box 89175-741, Yazd, Iran

Abstract

Reservoir inflow prediction is a vital subject in the field of hydrology because it determines the flood event. The negative impact of the floods could be minimized greatly if the flood frequency is predicted accurately in advance. In the present study, a novel hybrid model, bootstrap quadratic response surface is developed to test daily streamflow prediction. The developed bootstrap quadratic response surface model is compared with multiple linear regression model, first-order response surface model, quadratic response surface model, wavelet first-order response surface model, wavelet quadratic response surface model, and bootstrap first-order response surface model. Time series data of monsoon season (1 July to 30 September) for the year 2010 of the Chenab river basin are analyzed. The studied models are tested by using performance indices: Nash–Sutcliffe coefficient of efficiency, mean absolute error, persistence index, and root mean square error. Results reveal that the proposed model, i.e., bootstrap quadratic response surface shows good performance and produces optimum results for daily reservoir inflow prediction than other models used in the study.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3