Numerical Investigations on Unsteady Features of Rounded Trailing Edge Airfoils

Author:

Shu Bowen12ORCID,Gao Zhenghong1ORCID,Zhou Lin1,Chen Shusheng13ORCID

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

2. Aerospace Technology Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

3. AVIC The First Aircraft Institute, Xi’an 710089, China

Abstract

As a practical rounded trailing edge airfoil for coaxial rotors, DBLN-526 is a fore and aft symmetrical airfoil with two steps on its lower side. This airfoil has been used at the inboard section of the coaxial rotor system. As there are always two eddies behind the airfoil because of its rounded trailing edge, the interaction between the separation and transition should be considered. Thus, the unsteady Reynolds-averaged Navier-Stokes- (RANS-) based γ Re ¯ θ t model was used to analyze the unsteady transition and separation features. Three different rounded trailing-edge airfoils were compared with DBLN-526. Power spectrum density analysis and Δ Cl calculations demonstrated that the lift coefficient fluctuation of DBLN-526 was smaller than that of other rounded airfoils with different angles. Further investigation indicated that the locations of transition for DBLN-526 can be fixed at a wide range of angles by the unique design on its lower side. Because of this settled transition location, the size of separation is decreased, and the position of separation is settled as well, which leads to a lower lift coefficient fluctuation. The turbulent kinetic energy after the transition was higher, which injected a lot of energy into the boundary layer, and the separation zone near the transition position was relatively smaller. This study provides an indication for controlling separation and reducing unsteady fluctuations for rounded trailing edge airfoils.

Funder

Foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3