A Study on Stable Regularized Moving Least-Squares Interpolation and Coupled with SPH Method

Author:

Jiang Hua12ORCID,Chen Yunsai3ORCID,Zheng Xing1,Jin Shanqin1ORCID,Ma Qingwei14

Affiliation:

1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

2. Guangzhou Marine Engineering Corporation, Guangzhou 510250, China

3. Department of Technology, National Deep Sea Center, Qingdao 266237, China

4. School of Mathematics, Computer Science & Engineering, University of London, London EC1V 0HB, UK

Abstract

The smoothed particle hydrodynamics (SPH) method has been popularly applied in various fields, including astrodynamics, thermodynamics, aerodynamics, and hydrodynamics. Generally, a high-precision interpolation is required to calculate the particle physical attributes and their derivatives for the boundary treatment and postproceeding in the SPH simulation. However, as a result of the truncation of kernel function support domain and irregular particle distribution, the interpolation using conventional SPH interpolation experiences low accuracy for the particles near the boundary and free surface. To overcome this drawback, stable regularized moving least-squares (SRMLS) method was introduced for interpolation in SPH. The surface fitting studies were performed with a variety of polyline bases, spatial resolutions, particle distributions, kernel functions, and support domain sizes. Numerical solutions were compared with the results using moving least-squares (MLS) and three SPH methods, including CSPH, K2SPH, and KGFSPH, and it was found that SRMLS not only has nonsingular moment matrix, but also obtains high-accuracy result. Finally, the capability of the algorithm coupled with SRMLS and SPH was illustrated and assessed through several numerical tests.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3