Synthesis of CoFe2O4 Nanoparticles: The Effect of Ionic Strength, Concentration, and Precursor Type on Morphology and Magnetic Properties

Author:

Malinowska Izabela1,Ryżyńska Zuzanna2,Mrotek Eryka1,Klimczuk Tomasz2,Zielińska-Jurek Anna1ORCID

Affiliation:

1. Department of Process Engineering and Chemical Technology, Gdansk University of Technology, 80-233 Gdansk, Poland

2. Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233 Gdansk, Poland

Abstract

The present study highlights the effect of metal precursor types (SO42¯, Cl¯, and NO3¯), their concentration, and the influence of ionic strength of reaction environment on the morphology, surface, and magnetic properties of CoFe2O4 particles. The magnetic nanoparticles were obtained by chemical coprecipitation in alkaline medium at increasing metal concentration in the range of 0.0425 mol·dm-3 to 0.17 mol·dm-3 and calcination temperature from 400°C to 800°C. It was found that the chemistry of precursors can be directly correlated with magnetic properties. The CoFe2O4 particles from metal sulphate precursors showed the highest saturation magnetization and the lowest coercivity. The adjustment of ionic strength in the range of 1.25–5 M was achieved by adding an appropriate quantity of metal sulphates into aqueous solutions at a constant pH or by adding an appropriate quantity of NaClO5 under similar conditions. The average hydrodynamic size of CoFe2O4 increased from 46 nm to 54 nm with increasing metal concentration and ionic strength. An explanation of magnetic properties, caused by ionic strength and metal concentration, is given based mainly on the reduction in repulsive forces at the particle interface and compensation of the double electric layer in the presence of anions. The observed coercivity was lower for the particles obtained in solutions with the highest ionic strength, whereas the concentration of metals and calcination temperature affected the saturation magnetization and morphology of the obtained cobalt ferrite particles.

Funder

Narodowe Centrum Nauki

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3