Dietary Sucrose Determines Stress Resistance, Oxidative Damages, and Antioxidant Defense System in Drosophila

Author:

Strilbytska Olha1ORCID,Strutynska Tetiana1,Semaniuk Uliana1,Burdyliyk Nadia1,Bubalo Volodymyr2ORCID,Lushchak Oleh13ORCID

Affiliation:

1. Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk 76018, Ukraine

2. Laboratory of Experimental Toxicology and Mutagenesis, L.I. Medved’s Research Center of Preventive Toxicology, Food and Chemical Safety, MHU, Kyiv, Ukraine

3. Research and Development University, Ivano-Frankivsk, Ukraine

Abstract

Varied nutritional interventions affect lifespan and metabolic health. Abundant experimental evidence indicates that the carbohydrate restriction in the diet induces changes to support long-lived phenotypes. Reactive oxygen species (ROS) are among the main mechanisms that mediate the effect of nutrient consumption on the aging process. Here, we tested the influence of sucrose concentration in the diet on stress resistance, antioxidant defense systems, and oxidative stress markers in D. melanogaster. We found that high sucrose concentration in the fly medium leads to enhanced resistance to starvation, oxidative, heat, and cold stresses. However, flies that were raised on low sucrose food displayed increased levels of low-molecular-mass thiols, lipid peroxides in females, and higher activity of antioxidant enzymes, indicating that the consumption of a low carbohydrate diet could induce oxidative stress in the fruit fly. We found that the consumption of sucrose-enriched diet increased protein carbonyl level, which may indicate about the activation of glycation processes. The results highlight a strong dependence of oxidative metabolism in D. melanogaster from dietary carbohydrates.

Publisher

Hindawi Limited

Subject

General Agricultural and Biological Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3