Newton Linearization of the Curvature Operator in Structured Grid Generation with Sample Solutions

Author:

Piperni Pat1ORCID,Talukder Maahi M.1ORCID

Affiliation:

1. Clarkson University, Potsdam, NY, USA

Abstract

Elliptic grid generation equations based on the Laplacian operator have the well-known property of clustering the mesh near convex boundaries and declustering it near concave boundaries. In prior work, a new differential operator was derived and presented to address this issue. This new operator retains the strong smoothing properties of the Laplacian without the latter’s adverse curvature effects. However, the new operator exhibits slower convergence properties than the Laplacian, which can lead to increased turnaround times and in some cases preclude the achievement of convergence to machine accuracy. In the work presented here, a Newton linearization of the new operator is presented, with the objective of achieving more robust convergence properties. Sample solutions are presented by evaluating a number of solvers and preconditioners and assessing the convergence properties of the solution process. The efficiency of each solution method is demonstrated with applications to two-dimensional airfoil meshes.

Funder

Bombardier Aviation, Montreal, Canada

Publisher

Hindawi Limited

Subject

Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3