Temporal Convolutional Network with Wavelet Transform for Fall Detection

Author:

Lu Xilin1ORCID,Ling Yuanxiang2ORCID,Liu Shuzhi1ORCID

Affiliation:

1. School of Sports Science, Chongqing University, Chongqing 400000, China

2. College of Communication Engineering, Jilin University, Changchun 130000, China

Abstract

Fall detection is a challenging task for human activity recognition but is meaningful in health monitoring. However, for sensor-based fall prediction problems, using recurrent architectures such as recurrent neural network models to extract temporal features sometimes could not accurately capture global information. Therefore, an improved WTCN model is proposed in this research, in which the temporal convolutional network is combined with the wavelet transform. Firstly, we use the wavelet transform to process the one-dimensional time-domain signal into a two-dimensional time-frequency domain signal. This method helps us to process the raw signal data efficiently. Secondly, we design a temporal convolutional network model with ultralong memory referring to relevant convolutional architectures. It avoids the gradient disappearance and explosion problem usefully. In addition, this paper also conducts experiments comparing our WTCN model with typical recurrent architectures such as the long short-term memory network in conjunction with three datasets, UniMiB SHAR, SisFall, and UMAFall. The results show that WTCN outperforms other traditional methods, the accuracy of the proposed algorithm is up to 99.53%, and human fall behavior can be effectively recognized in real time.

Funder

Chongqing University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Reference100 articles.

1. An overview of human activity recognition using wearable sensors: healthcare and artificial intelligence;R. Liu,2021

2. Exploring contrastive learning in human activity recognition for healthcare;C. I. Tang,2020

3. IoT Wearable Sensor and Deep Learning: An Integrated Approach for Personalized Human Activity Recognition in a Smart Home Environment

4. A Study on the Application of Convolutional Neural Networks to Fall Detection Evaluated with Multiple Public Datasets

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3