Affiliation:
1. School of Sports Science, Chongqing University, Chongqing 400000, China
2. College of Communication Engineering, Jilin University, Changchun 130000, China
Abstract
Fall detection is a challenging task for human activity recognition but is meaningful in health monitoring. However, for sensor-based fall prediction problems, using recurrent architectures such as recurrent neural network models to extract temporal features sometimes could not accurately capture global information. Therefore, an improved WTCN model is proposed in this research, in which the temporal convolutional network is combined with the wavelet transform. Firstly, we use the wavelet transform to process the one-dimensional time-domain signal into a two-dimensional time-frequency domain signal. This method helps us to process the raw signal data efficiently. Secondly, we design a temporal convolutional network model with ultralong memory referring to relevant convolutional architectures. It avoids the gradient disappearance and explosion problem usefully. In addition, this paper also conducts experiments comparing our WTCN model with typical recurrent architectures such as the long short-term memory network in conjunction with three datasets, UniMiB SHAR, SisFall, and UMAFall. The results show that WTCN outperforms other traditional methods, the accuracy of the proposed algorithm is up to 99.53%, and human fall behavior can be effectively recognized in real time.
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献