Discovering Approximate and Significant High-Utility Patterns from Transactional Datasets

Author:

Tang Huijun12ORCID,Wang Le2,Liu Yangguang2,Qian Jiangbo1

Affiliation:

1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China

2. Faculty of Finance and Information, Ningbo University of Finance & Economics, Ningbo 315175, China

Abstract

Mining high-utility pattern (HUP) on transactional datasets has been widely discussed, and various algorithms have been introduced to settle this problem. However, the time-space efficiency of the algorithms is still limited, and the mining system cannot provide timely feedback on relevant information. In addition, when mining HUP from taxonomy transactional datasets, a large portion of the quantitative results are just accidental responses to the user-defined utility constraints, and they may have no statistical significance. To address these two problems, we propose two corresponding approaches named Sampling HUP-Miner and Significant HUP-Miner. Sampling HUP-Miner pursues a sample size of a transitional dataset based on a theoretical guarantee; the mining results based on such a sample size can be an effective approximation to the results on the whole datasets. Significant HUP-Miner proposes the concept of testable support, and significant HUPs could be drawn timely based on the constraint of testable support. Experiments show that the designed two algorithms can discover approximate and significant HUPs smoothly and perform well according to the runtime, pattern numbers, memory usage, and average utility.

Publisher

Hindawi Limited

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3