Polarimetric Direction of Arrival Estimations Based on Adaptive Linear Time-Frequency Transforms

Author:

Shuai Shao1ORCID,Aijun Liu1ORCID,Xiuhong Wang1ORCID,Hongjuan Yang1ORCID

Affiliation:

1. School of Information Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China

Abstract

A spatially polarized time-frequency distribution (SPTFD) based on dual-polarized double-fed antenna arrays is adapted to deal with polarization-unstable signals. A linear time-frequency (TF) representation was used for an instantaneous frequency (IF) estimate, primarily due to its simplicity and immunity to cross-interference. Using a set of linear TF transformations using Gaussian windows and Fourier oscillation kernels, the IF estimated window widths of multiple unstable signals are obtained. This paper introduces a new method for estimating the direction of arrival (DOA) of polarized waves using adaptive linear time-frequency transforms. In this paper, a narrowband far-field point source on the receiving array is analyzed. The source signal is split into two orthogonally polarized components. The optimal window is determined by the first derivative of the IF; for this purpose, we take a simple algorithm for solving the derivative and optimize it. In developing TF-adaptive and fully automatic TF display technology, the first method is to use the time-adaptive window for minimizing the IF estimate mean square error (MSE) sum at each moment, while the second procedure is to adjust according to time and frequency and minimize estimate MSE sum at each position in the TF region. Due to its combination with signal polarization, the spatial time-frequency distribution (STFD) gains more freedom and thus perfects the phonon space estimation of noise and signal. On the SPTFD platform, polarized time-frequency multiple signal classification (PTF-MUSIC) is used for the estimation of signal direction of arrival, which outperforms conventional time-frequency MUSIC. Using the example of a synthesized signal, this method outperforms conventional techniques in DOA estimation.

Funder

Research Fund Program of Guangdong Key Laboratory of Aerospace Communication and Networking Technology

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3