Geometry-Experiment Algorithm for Steiner Minimal Tree Problem

Author:

Yang Zong-Xiao1,Jia Xiao-Yao1,Hao Jie-Yu1,Gao Yan-Ping1

Affiliation:

1. Institute of Systems Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China

Abstract

It is well known that the Steiner minimal tree problem is one of the classical nonlinear combinatorial optimization problems. A visualization experiment approach succeeds in generating Steiner points automatically and showing the system shortest path, named Steiner minimum tree, physically and intuitively. However, it is difficult to form stabilized system shortest path when the number of given points is increased and irregularly distributed. Two algorithms, geometry algorithm and geometry-experiment algorithm (GEA), are constructed to solve system shortest path using the property of Delaunay diagram and basic philosophy of Geo-Steiner algorithm and matching up with the visualization experiment approach (VEA) when the given points increase. The approximate optimizing results are received by GEA and VEA for two examples. The validity of GEA was proved by solving practical problems in engineering, experiment, and comparative analysis. And the global shortest path can be obtained by GEA successfully with several actual calculations.

Publisher

Hindawi Limited

Subject

Applied Mathematics

Reference20 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3