Photocatalytic Performance Study of Organophosphorus-Doped Tungsten Trioxide and Composite Materials

Author:

Zhang Ping12ORCID,Sun Jiayu2,Qi wang 2,Chen Wei1,Li Xiaochen2

Affiliation:

1. College of Environment, Hohai University, Nanjing 210098, China

2. College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai’an 271000, China

Abstract

The present study successfully produced a highly effective and stable organ phosphorus-doped tungsten trioxide (P-WO3) photocatalyst by a combination of hydrothermal and postcalcination methods. The crystallites, morphologies, and optical properties of the produced WO3 and P-WO3 crystals were investigated. The results indicated that P was consistently doped into the WO3 lattice in a pentavalent-oxidation state (P5+). Additionally, charge carrier traps capable of accepting photoelectrons were created. Additionally, the optical band gap was reduced from 2.4 to 2.33 eV. The degradation of methyl blue by photocatalysts was utilized to evaluate the photocatalytic performance of the synthesized P-WO3 samples at varied P concentrations (MB). The sample containing 6% -P-WO3 exhibited the best photocatalytic performance, degrading 96 percent of MB in 120 minutes, which was more than four times faster than the pure WO3 sample. The practicality of the synthesized P-WO3 was determined using samples from two residential wastewater treatment plants. When treating real wastewater with low organic matter concentrations, the P-WO3 demonstrated strong photodegradation performance. The creation of hydroxyl radicals (OH) and photography-created holes (h+) could be the key protagonists of photocatalytic activity in the P-WO3.

Publisher

Hindawi Limited

Subject

General Chemical Engineering

Reference32 articles.

1. Structure and morphology of laser-ablated WO3 thin films

2. A Novel Electrophotographic System

3. Preparation of WO3 thin films for electrochromic display by plasma process;H. Kawasaki;Journal of Plasma and Fusion Research Series,2009

4. Rationally Designed/Constructed CoOx/WO3 Anode for Efficient Photoelectrochemical Water Oxidation

5. Experimental Study of the electrochromic properties of WO3 thin films derived by electrochemical method;C.-G. Kuo;Journal of Marine Science and Technology,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3