International Course to Support Nuclear Licensing by User Training in the Areas of Scaling, Uncertainty, and 3D Thermal-Hydraulics/Neutron-Kinetics Coupled Codes: 3D S.UN.COP Seminars

Author:

Petruzzi Alessandro1ORCID,D'Auria Francesco1,Bajs Tomislav2,Reventos Francesc3,Hassan Yassin4

Affiliation:

1. Department of Mechanical, Nuclear, and Production Engineering (DIMNP), University of Pisa, Via Diotisalvi 2, 56100 Pisa, Italy

2. Department of Power Systems, Faculty of Electrical Engineering and Computing (FER), University of Zagreb, 10000 Zagreb, Croatia

3. Department of Physics and Nuclear Engineering, Technical University of Catalonia, Avenida Diagonal 647, 08028 Barcelona, Spain

4. Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843-3133, USA

Abstract

Thermal-hydraulic system computer codes are extensively used worldwide for analysis of nuclear facilities by utilities, regulatory bodies, nuclear power plant designers, vendors, and research organizations. The computer code user represents a source of uncertainty that can influence the results of system code calculations. This influence is commonly known as the “user effect” and stems from the limitations embedded in the codes as well as from the limited capability of the analysts to use the codes. Code user training and qualification represent an effective means for reducing the variation of results caused by the application of the codes by different users. This paper describes a systematic approach to training code users who, upon completion of the training, should be able to perform calculations making the best possible use of the capabilities of best estimate codes. In other words, the program aims at contributing towards solving the problem of user effect. In addition, this paper presents the organization and the main features of the 3D S.UN.COP (scaling, uncertainty, and 3D coupled code calculations) seminars during which particular emphasis is given to the areas of the scaling, uncertainty, and 3D coupled code analysis.

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of steam generator tube rupture accident for OPR 1000 nuclear power plant;Nuclear Engineering and Design;2021-10

2. Uncertainty Quantification in a Regulatory Environment;Handbook of Uncertainty Quantification;2017

3. Uncertainty Quantification in a Regulatory Environment;Handbook of Uncertainty Quantification;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3