Estimation of Risk Thresholds for a Landslide in the Three Gorges Reservoir Based on a KDE-Copula-VaR Approach

Author:

Zhang Shen1ORCID,Ma Junwei2ORCID,Tang Huiming12ORCID

Affiliation:

1. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China

2. Three Gorges Research Center for Geo-Hazards of the Ministry of Education, China University of Geosciences, Wuhan, Hubei 430074, China

Abstract

The Three Gorges Reservoir area, one of the most landslide-prone areas in China, is characterized by widely distributed deep-seated landslides exhibiting creep deformation due to rainfall and reservoir fluctuation. Thresholds, which are a key component for a reliable landslide early warning system, are still lacking for the prediction of movements of deep-seated reservoir landslides with creep deformation because information about reservoir fluctuation indicators is lacking, uncertainty is ignored, and binary output is provided. The risk threshold, defined as the tolerance criteria for risks that will lead to action, is an effective measure of the degree of uncertainty. In the present study, a hybrid approach utilizing kernel density estimation, a copula function, and the value at risk is proposed for the estimation of the risk threshold for the Baishuihe Landslide, a typical deep-seated landslide in the Three Gorges Reservoir area. Historical observations over approximately 15 years including rainfall, reservoir fluctuation, and landslide velocity were used to extract the risk threshold. A three-level risk threshold describing the minimum magnitudes of rainfall and reservoir fluctuation for changing the landslide movement state under three confidence levels was developed. A three-level risk response procedure, including risk responses in yellow alert, orange alert, and red alert, is proposed for risk management. Given its successful application, the present approach can be used to estimate the risk threshold for deep-seated landslides.

Funder

Natural Science Foundation of Hubei Province

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3