Characterization of Rice Husk Fiber-Reinforced Polyvinyl Chloride Composites under Accelerated Simulated Soil Conditions

Author:

Wang Lei1ORCID,He Chunxia1ORCID

Affiliation:

1. College of Engineering, Nanjing Agricultural University, Nanjing 210031, China

Abstract

To study the effect of accelerated simulated soil aging on the physical, mechanical, and thermal behavior of rice husk fiber-reinforced polyvinyl chloride composites. The worst soil aging condition was determined using the orthogonal design method, and the physical, mechanical, and thermal properties of the composites were analyzed over 21 d. The results indicate that the worst soil-accelerated aging condition was as follows: soil temperature of 65°C, soil pH of 2.5, soil moisture content of 45%, and soil porosity (ratio of thick to thin) of 3 : 7. An extended aging time tends to cause poor interfacial bonding quality, and the presence of many microcracks reduced thermal stability and flexural and impact strength. Many fibers were exposed, which resulted in increasing 24 h water absorption and thermal expansion coefficient. The hardness, tensile strength, flexural strength, impact strength, and pyrolysis temperature of the composites (after 21 d of aging) decreased from 50 HRR, 17.42 MPa, 35.2 MPa, 3.19 kJ/m2, and 258.5°C to 26 HRR, 11.5 MPa, 16.8 MPa, 1.16 kJ/m2, and 251.3°C, respectively. The mass loss rate, 24 h water absorption, discoloration, and line thermal expansion coefficient of the composites increased from 0%, 4.19%, 0, and 28.43 to 2.9%, 7.92%, 29.03, and 29.98, respectively.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Polymers and Plastics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3