Combined Ultrasound Imaging and Biomechanical Modeling to Estimate Triceps Brachii Musculotendon Changes in Stroke Survivors

Author:

Li Le12ORCID,Tong Raymond Kai-yu3

Affiliation:

1. Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

2. Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston and Research Center at TIRR Memorial Hermann Hospital, Houston, TX, USA

3. Biomedical Engineering Division, Department of Electronic Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong

Abstract

The aim of this study was to investigate the changes of musculotendon parameters of triceps brachii in persons after stroke based on subject-specific biomechanical modeling technique combined with in vivo ultrasound measurement. Five chronic stroke survivors and five normal control subjects were recruited. B-mode ultrasound was applied to measure muscle pennation angle and the optimal length of three heads of triceps’ brachii at different joint angle positions in resting and isometric contraction. Measured ultrasound data were used to reduce the unknown parameters during the modeling optimization process. The results showed that pennation angles varied with joint angles, and the longhead TRI pennation from stroke group was smaller than the literature value. The maximum isometric muscle stress from persons after stroke was significantly smaller than that found in the unimpaired subjects. The prediction of joint torque fits well with the measured data from the control group, whereas the prediction error is larger in results from persons after stroke. In vivo parameters from ultrasound data could help to build a subject-specific biomechanical model of elbow extensor for both unimpaired and hemiplegic subjects, and then the results driven from the model could enhance the understanding of motor function changes for persons after stroke.

Funder

Natural Science Foundation of Guangdong Province, China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3