Research on an Intelligent Identification and Classification Method of Complex Holes in Triangle Meshes for 3D Printing

Author:

Zhang Shanhui1ORCID,Wei Wei2ORCID,Wu Wei2ORCID

Affiliation:

1. School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China

2. Shandong Shanda Hoteam Software Co., Ltd, Jinan, Shandong 250101, China

Abstract

In triangular mesh models, the repair of complex hole poses a difficult problem, which always causes serious repair defects. Therefore, it is needed to develop an intelligent identification and classification method of complex holes to reduce repair difficulties. First, the topological structure of the complex hole is studied and all the holes are divided into single holes and continuous holes depending on whether there are intersection points. Second, to tackle the nesting and connecting of complex continuous holes, a decomposition method of multiply connected domains based on intersection points is proposed to partition or reconstruct complex continuous holes into single holes. Based on the different geometric structures, single holes are classified into five common hole types and a corresponding identification method of single holes is presented. Finally, an experiment is carried out to verify the repair quality and efficiency of the proposed method. Compared with Geomagic software, the proposed method can automatically identify and partition complex holes with fewer defects and similar efficiency. It can reduce the difficulties of repairing complex holes and enable the repair of complex holes based on existing methods. It is shown that the method can be applied to complex hole repair of 3D printing models without the participation of technicians.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3