Photosynthesis and Fine Root Growth Dynamics of Soybean in Walnut-Soybean Agroforestry System

Author:

Liu Bin1ORCID,Gao Pengxiang1ORCID,Zhang Shuoxin1ORCID

Affiliation:

1. College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China

Abstract

Agroforestry system is regarded as a promising practice in sustainable agricultural management. However, the effects of long-term tree-based intercropping on crop remain poorly understood, especially in the Loess Plateau (China). In this study, the impacts of photosynthetic and respiration rate were determined by the portable photosynthesis system (Li-6400), and the effects of the root growth dynamics of soybean in the walnut-soybean intercropping system were measured by soil auger and WinRHIZO root analysis system, in the Loess Plateau. The results showed that soybean reached the highest net photosynthetic rate during flowering period, with the net photosynthetic rate of intercropped soybean, which was 20.40 μmol·m−2·s−1, significantly higher than that of its monocropped counterpart. Soybean biomass reached the maximum during the pod-bearing period, with intercropped soybean biomass being 25.49 g, significantly higher than that of its monocropped counterpart. The mean diameter and increased density of soybean fine roots reduced along with increased soil depth. Both the diameter (0.43 mm) and increased density (930 cm/dm3) of intercropped soybean fine roots were evidently higher than those of monocropped soybean (0.35 mm, 780 cm/dm3). With increasing cropping years, fine roots of intercropped soybean tended to be mainly distributed in soil at a depth between 0 and 20 cm from the fifth year. Collectively, compared with soybean monoculture, walnut-soybean agroforestry system is more conducive to soybean growth in the Loess Plateau.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference29 articles.

1. The relationship between environmental decline and the destruction of vegetation in Loess Plateau;J.-T. Zhang;Journal of Shanxi University(Natural Science Edition),2010

2. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China

3. Above and below ground interactions in agroforestry systems

4. Research on root temporal and spacial distribution of intercropped cereal and legume crops;G. P. Chen;Acta Agriculturae Boreali-occidentalis Sinica.,2007

5. RSPO principles and criteria for sustainable palm oil production;S. A. Bhagwat;Conservation Biology,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3