Optimization of Multiband White-Light Illuminants for Specified Color Temperatures

Author:

Soltic Snjezana1ORCID,Chalmers Andrew Neil2

Affiliation:

1. Manukau Institute of Technology, Private Bag 94006, Manukau 2241, New Zealand

2. Auckland University of Technology, Institute of Biomedical Technologies, Private Bag 92006, Auckland 1142, New Zealand

Abstract

This paper describes an effective approach for the optimization of multiband spectra to produce prospective white-light spectra having specific color temperatures. The optimization process employs a genetic algorithm known as differential evolution, which aims to minimize the color rendering differences between a prospective white-light spectrum and its corresponding reference illuminant. Color rendering is assessed by calculating the CIEDE2000 color difference (ΔE00) for 14 CIE test colors under the two sources. Optimized white-light spectra were matched to three CIE standard illuminants, that is, A (2856 K), D50 (5003 K), and D65 (6504 K). Optimal solutions for three- and four-band 25 and 50 nm Gaussian spectra are presented and analyzed, together with mixed 4-LED spectra that were optimized in the same way. In all cases, the simulated sources were shown to provide color rendering of such quality that ΔE00av ≤ 2.24 units. Such white-light sources would likely find wide acceptance in numerous lighting applications.

Funder

Technology Development Centre of the Manukau Institute of Technology

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence in Light-Source Design;Computer Architecture in Industrial, Biomechanical and Biomedical Engineering;2019-12-11

2. Spectral Image Processing for Museum Lighting Using CIE LED Illuminants;Sensors;2019-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3