Bow and Stern Control Surface’s Effectiveness and Influence on Supercavity

Author:

Wei Ping1ORCID,Yan Wenrong12,Wang Shoufa1,Yu Xin1

Affiliation:

1. College of Weaponry Engineering, Naval University of Engineering, Wuhan 430033, China

2. Xi'an Modern Chemistry Research Institute, Xi'an 710065, China

Abstract

The numerical model of supercavitating flow field was established based on multiphase model, cavitation model, and turbulence model. The model was employed to simulate the supercavitation flow for the supercavitating vehicle with two types of control surfaces: bow rudder and stern rudder. The influence of both control surfaces on the supercavity shape and rudder effectiveness is compared under the different rudder angles (0-12°), and the effectiveness and the influences on supercavities of bow rudder and stern rudder were explored according to the numerical research results. From the research results, the following conclusions can be drawn: (1) the bow rudders have stable rudder effectiveness and available rudder angle, and the bow rudders also have significant influence on supercavities’ shape. (2) By contrast with the bow rudder, stern rudders’ effectiveness is difficult to predict accurately, and the phenomenon of stalling will occur when stern rudders’ rudder angle exceeds 6°; however, there is almost no influence of stern rudders on supercavities. (3) The bow and stern rudders joint control mode must take the influence on supercavities’ shape and the accuracy of control force’s forecasting into account at the same time. The research is helpful to the optimizing of superhigh-speed vehicles and the design of control modes.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Reference12 articles.

1. Motion control model of supercavitating vehicle considering time-delay effect of supercavitation;L. Kai;Journal of Traffic and Transportation Engineering,2010

2. Stability Analysis and Control of Supercavitating Vehicles With Advection Delay

3. Hydrodynamic layout of strongly maneuvering underwater supercavitating vehicle;L. Kai;Journal of Traffic and Transportation Engineering,2010

4. Modeling and control of underwater supercavitating vehicle based on memory effect of cavity;J. H. Wang;Zhendong yu Chongji(Journal of Vibration and Shock),2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3