Detection of African Swine Fever Virus in Feed and Feed Mill Environment Following Extended Storage

Author:

Houston Grace E.1,Trujillo Jessie D.12,Jones Cassandra K.3,Kwon Taeyong12,Stark Charles R.4,Cool Konner12,Paulk Chad B.4,Gaudreault Natasha N.12,Woodworth Jason C.3,Morozov Igor12,Gallardo Carmina5,Gebhardt Jordan T.1ORCID,Richt Jürgen A.12ORCID

Affiliation:

1. Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA

2. Center of Excellence for Emerging and Zoonotic Animal Disease, Kansas State University, Manhattan, KS, USA

3. Department of Animal Science and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA

4. Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA

5. Instituto Nacional de Investigación y Technología Agraria y Alimentaria, Animal Health Research Centre, Madrid, Spain

Abstract

One way to mitigate risk of feed-based pathogens for swine diets is to quarantine feed ingredients before inclusion in complete diets. Data have been generated evaluating the stability of swine viruses in ingredients, but the stability of African swine fever virus (ASFV) in feed or in a feed manufacturing environment has not been well characterized. Therefore, this study aimed to determine the stability of ASFV DNA in swine feed and on mill surfaces over time. A pilot-scale feed mill was used to manufacture six sequential batches of feed consisting of a batch of ASFV-free feed, followed by a batch inoculated with ASFV (final concentration = 5.6 × 104 TCID50/g), and then four subsequent ASFV-free batches. After each batch, 10 feed samples were aseptically collected in a double “X” pattern. During feed manufacturing, 24 steel coupons were placed on the floor of the manufacturing area and allowed to collect dust during feed manufacturing. Once feed manufacturing was completed, feed samples and steel coupons were stored at room temperature. Three of each were randomly selected from storage on 3, 7, 14, 28, 60, 90, and 180 days after feed manufacturing and analyzed for ASFV DNA. For feed samples, there was evidence of a batch × day interaction ( P = 0.023 ) for the quantification of genomic copies/g of feed, indicating that the amount of ASFV DNA present was impacted by both the batch of feed and days held at room temperature. There were no differences of genomic copies/g in early batches, but quantity of detectable ASFV decreased with increasing storage time. In Batches 4–6, the greatest quantity of ASFV DNA was detected on the day of feed manufacturing. The lowest quantity was detected on Day 7 for Batch 4, Day 60 for Batch 5, and at 28 and 180 days for Batch 6. There was no evidence of ASFV degradation on environmental discs across holding times ( P = 0.433 ). In conclusion, the quarantining of feed may help reduce but not eliminate the presence of ASFV DNA in feed over time. Importantly, ASFV DNA was detectable on feed manufacturing surfaces for at least 180 days with no overt evidence of reduction, highlighting the importance of bioexclusion of ASFV within feed manufacturing facilities and the need for thorough/effective decontamination and other mitigation processes in affected areas.

Funder

NBAF Transition Funds

Publisher

Hindawi Limited

Subject

General Veterinary,General Immunology and Microbiology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3