Affiliation:
1. State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
Abstract
Due to great velocity gradients among the outgoing flow, it is much common to form large-scale reverse flow with oblique movements outside the conventional separated stilling basin. Aimed at above problems, this paper proposes to remove the longitudinal splitter wall and then physically and numerically investigate the corresponding influence upon the compound stilling basin. The standard k-ε, renormalization group k-ε, realizable k-ε, and large eddy simulation turbulence models are all employed to reveal downstream three-dimensional flow field. Experimental validation of numerical results shows that the renormalization group k-ε turbulence model is the most successful in predicting the flow field among the four models. Both methods prove that the removed splitter wall exerts great impact upon downstream stilling basin. In view of the removed splitter wall, discharging inflow would greatly diffuse to form a typical three-dimensional (3D) hydraulic jump with large-scale reverse flow. High energy dissipation region and high turbulent kinetic energy region are both moved upstream. Thus, the velocity decay among the discharging flow in the compound stilling basin is significantly enhanced. Compared to the separated stilling basin, the maximum velocity and average velocity of the outgoing flow, respectively, decrease more than 30%, and 20% in the compound stilling basin. Additionally, the velocity gradients between the left and the right outgoing flow reduce by over 65% with turbulent kinetic energy gradients almost down to zero. The outgoing flow from the compound stilling basin becomes much uniform with the phenomenon of obliquely moving flow totally eliminated.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献