Molecular Evolution and Functional Analysis of Rubredoxin-Like Proteins in Plants

Author:

Li Ying1ORCID,Liu Pan pan1,Ni Xin1

Affiliation:

1. Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China

Abstract

Rubredoxins are a class of iron-containing proteins that play an important role in the reduction of superoxide in some anaerobic bacteria and also act as electron carriers in many biochemical processes. Unlike the more widely studied about rubredoxin proteins in anaerobic bacteria, very few researches about the function of rubredoxins have been proceeded in plants. Previous studies indicated that rubredoxins inA. thalianamay play a critical role in responding to oxidative stress. In order to identify more rubredoxins in plants that maybe have similar functions as the rubredoxin-like protein ofA. thaliana, we identified and analyzed plant rubredoxin proteins using bioinformatics-based methods. Totally, 66 candidate rubredoxin proteins were identified based on public databases, exhibiting lengths of 187–360 amino acids with molecular weights of 19.856–37.117 kDa. The results of subcellular localization showed that these candidate rubredoxins were localized to the chloroplast, which might be consistent with the fact that rubredoxins were predominantly expressed in leaves. Analyses of conserved motifs indicated that these candidate rubredoxins contained rubredoxin and PDZ domains. The expression patterns of rubredoxins in glycophyte and halophytic plant under salt/drought stress revealed that rubredoxin is one of the important stress response proteins. Finally, the coexpression network of rubredoxin inArabidopsis thalianaunder abiotic was extracted from ATTED-II to explore the function and regulation relationship of rubredoxin inArabidopsis thaliana. Our results showed that putative rubredoxin proteins containing PDZ and rubredoxin domains, localized to the chloroplast, may act with other proteins in chloroplast to responses to abiotic stress in higher plants. These findings might provide value inference to promote the development of plant tolerance to some abiotic stresses and other economically important crops.

Funder

Central University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3