Shoot Organogenesis and Plant Regeneration from Leaf Explants ofLysionotus serratusD. Don

Author:

Li Qiansheng1ORCID,Deng Min2,Zhang Jie3ORCID,Zhao Wei2,Song Yigang2,Li Quanjian2,Huang Qingjun1

Affiliation:

1. School of Ecology, Shanghai Institute of Technology, 100 Haiquan Road, Fengxian, Shanghai 201418, China

2. Shanghai Chenshan Plant Sciences Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China

3. Genetic Diagnosis Center, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People’s Hospital of Kunming, Yunnan Province 650032, China

Abstract

The gesneriaceous perennial plant,Lysionotus serratus, has been used in traditional Chinese medicine. It also has a great development potential as an ornamental plant with its attractive foliage and beautiful flowers. An efficient propagation and regeneration system via direct shoot organogenesis from leaf explant was established in this study. High active cytokinin (6-benzyladenine (BA) or thidiazuron (TDZ)) was effective for direct organogenesis of initial induction. Murashige and Skoog (MS) growth media containing 0.5 mg L−1BA alone or with combination of 0.1 mg L−1  α-Naphthaleneacetic acid (NAA) were the most effective for shoot proliferation. High BA concentration (1.0 mg L−1) in the media caused high percentage of vitrified shoots though they introduced high shoot proliferation rate. Histological observation indicated that adventitious shoot regeneration on the medium containing 0.5 mg L−1BA alone occurred directly from leaf epidermal cells without callus formation. Regenerated shoots rooted well on medium containing half-strength MS medium with 0.5 mg L−1indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA), and the plantlets successfully acclimatized and grew vigorously in the greenhouse with a 94.2% and 92.1% survival rate.

Funder

Shanghai Municipal Administration of Forestation and City Appearances

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3