Multifractal Analysis of Pore Structure and Evaluation of Deep-Buried Cambrian Dolomite Reservoir with Image Processing: A Case from Tarim Basin, NW China

Author:

Zhang Xiaojun12,Han Haodong3ORCID,Peng Jun4ORCID,Gou Yingchun12

Affiliation:

1. Research Institute of Petroleum Exploration & Development-Northwest, Petrochina, Lanzhou 730020, China

2. Key Laboratory of Reservoir Characterization, CNPC, Lanzhou 730020, China

3. Chengdu Center of China Geological Survey, Chengdu 610081, China

4. College of Geosciences and Technology, Southwest Petroleum University, Chengdu 610500, China

Abstract

Reservoir pore space assessment is of great significance for petroleum exploration and production. However, it is difficult to describe the pore characteristics of deep-buried dolomite reservoirs with the traditional linear method because these rocks have undergone strong modification by tectonic activity and diagenesis and show significant pore space heterogeneity. In this study, 38 dolostone samples from 4 Cambrian formations of Tarim Basin in NW China were collected and 135 thin section images were analyzed. Multifractal theory was used for evaluation of pore space heterogeneity in deep-buried dolostone based on thin section image analysis. The physical parameters, pore structure parameters, and multifractal characteristic parameters were obtained from the digital images. Then, the relationships between lithology and these parameters were discussed. In addition, the pore structure was classified into four categories using K-means clustering analysis based on multifractal parameters. The results show that the multifractal phenomenon generally exists in the pore space of deep-buried dolomite and that multifractal analysis can be used to characterize the heterogeneity of pore space in deep-buried dolomite. For these samples, multifractal parameters, such as αmin, αmax, ΔαL, ΔαR, Δf, and AI, correlate strongly with porosity but only slightly with permeability. However, the parameter Δα, which is usually used to reveal heterogeneity, does not show an obvious link with petrophysical properties. Of dolomites with different fabrics, fine crystalline dolomite and medium crystalline dolomite show the best petrophysical properties and show significant differences in multifractal parameters compared to other dolomites. More accurate porosity estimations were obtained with the multifractal generalized fractal dimension, which provides a new method for porosity prediction. The various categories derived from the K-means clustering analysis of multifractal parameters show distinct differences in petrophysical properties. This proves that reservoir evaluation and pore structure classification can be accurately performed with the K-means clustering analysis method based on multifractal parameters of pore space in deep-buried dolomite reservoirs.

Funder

Key Laboratory of Reservoir Characterization, CNPC

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3