Drug-Carrying Magnetic Nanocomposite Particles for Potential Drug Delivery Systems

Author:

Asmatulu R.1,Fakhari A.2,Wamocha H. L.1,Chu H. Y.3,Chen Y. Y.3,Eltabey M. M.14,Hamdeh H. H.5,Ho J. C.35

Affiliation:

1. Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA

2. Department of Bioengineering, University of KS, Lawrence, KS, USA

3. Institute of Physics, Academia Sinica, Taipei, Taiwan

4. Department of Basic Engineering Science, Menoufiya University, Shebin, Egypt

5. Department of Physics, Wichita State University, Wichita, KS, USA

Abstract

Drug-carrying magnetic nanocomposite spheres were synthesized using magnetite nanoparticles and poly (D,L-lactide-co-glycolide) (PLGA) for the purpose of magnetic targeted drug delivery. Magnetic nanoparticles (13 nm on average) of magnetite were prepared by a chemical coprecipitation of ferric and ferrous chloride salts in the presence of a strong basic solution (ammonium hydroxide). An oil-in-oil emulsion/solvent evaporation technique was conducted at 7000 rpm and 1.5–2 hours agitation for the synthesis of nanocomposite spheres. Specifically, PLGA and drug were first dissolved in acetonitrile (oily phase I) and combined with magnetic nanoparticles, then added dropwise into viscous paraffin oil combined with Span 80 (oily phase II). With different contents (0%, 10%, 20%, and 25%) of magnetite, the nanocomposite spheres were evaluated in terms of particle size, morphology, and magnetic properties by using dynamic laser light scattering (DLLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and a superconducting quantum interference device (SQUID). The results indicate that nanocomposite spheres (200 nm to 1.1 μm in diameter) are superparamagnetic above the blocking temperature near 40 K and their magnetization saturates above 5 000 Oe at room temperature.

Funder

Wichita State University

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3