Mathematical Morphology on Hypergraphs Using Vertex-Hyperedge Correspondence

Author:

Sebastian Bino1,Unnikrishnan A.2,Balakrishnan Kannan1,Ramkumar P. B.3

Affiliation:

1. Department of Computer Applications, Cochin University of Science and Technology, Cochin 682022, India

2. Naval Physical and Oceanographic Laboratory, Cochin 682021, India

3. Department of Mathematics, Rajagiri School of Engineering and Technology, Cochin 682039, India

Abstract

The focus of this paper is to develop computationally efficient mathematical morphology operators on hypergraphs. To this aim we consider lattice structures on hypergraphs on which we build morphological operators. We develop a pair of dual adjunctions between the vertex set and the hyperedge set of a hypergraph H, by defining a vertex-hyperedge correspondence. This allows us to recover the classical notion of a dilation/erosion of a subset of vertices and to extend it to subhypergraphs of H. This paper also studies the concept of morphological adjunction on hypergraphs for which both the input and the output are hypergraphs.

Funder

University Grants Commission

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Soft morphological filtering using hypergraphs;IOP Conference Series: Materials Science and Engineering;2021-02-01

2. On constructing morphological erosion of intuitionistic fuzzy hypergraphs;The Journal of Analysis;2018-06-04

3. Morphological filtering on hypergraphs;Discrete Applied Mathematics;2017-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3