Abstract
We generate a sequence of measurable mappings iteratively and
study necessary conditions for its strong convergence to a random
fixed point of strongly pseudocontractive random operator. We
establish the weak convergence of an implicit random iterative
procedure to common random fixed point of a finite family of
nonexpansive random operators in Hilbert spaces. We prove the
equivalence between the convergence of random Ishikawa and random
Mann iterative schemes for contraction random operator and
strongly pseudocontractive random operator. We also examine the
stability of random fixed point iterative procedures for the
random operators satisfying certain contractive
conditions in the context of metric spaces.
Subject
Applied Mathematics,Modelling and Simulation,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献