Potassium Current Is Not Affected by Long-Term Exposure to Ghrelin or GHRP-6 in Somatotropes GC Cells

Author:

Domínguez Mancera Belisario12ORCID,Monjaraz Guzman Eduardo1,Flores-Hernández Jorge L. V.1,Barrientos Morales Manuel2,Martínez Hernandez José M.2,Hernández Beltran Antonio2,Cervantes Acosta Patricia2

Affiliation:

1. Laboratorio de Neuroendocrinología, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, CP 7200, PUE, Mexico

2. Laboratorio de Biología Celular, Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, CP 91710, VER, Mexico

Abstract

Ghrelin is a growth hormone (GH) secretagogue (GHS) and GHRP-6 is a synthetic peptide analogue; both act through the GHS receptor. GH secretion depends directly on the intracellular concentration of Ca2+; this is determined from the intracellular reserves and by the entrance of Ca2+ through the voltage-dependent calcium channels, which are activated by the membrane depolarization. Membrane potential is mainly determined by K+ channels. In the present work, we investigated the effect of ghrelin (10 nM) or GHRP-6 (100 nM) for 96 h on functional expression of voltage-dependent K+ channels in rat somatotropes: GC cell line. Physiological patch-clamp whole-cell recording was used to register the K+ currents. With Cd2+ (1 mM) and tetrodotoxin (1 μm) in the bath solution recording, three types of currents were characterized on the basis of their biophysical and pharmacological properties. GC cells showed a K+ current with a transitory component sensitive to 4-aminopyridine, which represents ~40% of the total outgoing current; a sustained component named delayed rectifier , sensitive to tetraethylammonium; and a third type of K+ current was recorded at potentials more negative than −80 mV, permitting the entrance of K+ named inward rectifier (KIR). Chronic treatment with ghrelin or GHRP-6 did not modify the functional expression of K+ channels, without significant changes () in the amplitudes of the three currents observed; in addition, there were no modifications in their biophysical properties and kinetic activation or inactivation.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3