A Self-Adaptive Regression-Based Multivariate Data Compression Scheme with Error Bound in Wireless Sensor Networks

Author:

Zhang Jianming1ORCID,Yang Kun2,Xiang Lingyun1,Luo Yuansheng1,Xiong Bing1,Tang Qiang1

Affiliation:

1. School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China

2. School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK

Abstract

Wireless sensor networks (WSNs) have limited energy and transmission capacity, so data compression techniques have extensive applications. A sensor node with multiple sensing units is called a multimodal or multivariate node. For multivariate stream on a sensor node, some data streams are elected as the base functions according to the correlation coefficient matrix, and the other streams from the same node can be expressed in relation to one of these base functions using linear regression. By designing an incremental algorithm for computing regression coefficients, a multivariate data compression scheme based on self-adaptive regression with infinite norm error bound for WSNs is proposed. According to error bounds and compression incomes, the self-adaption means that the proposed algorithms make decisions automatically to transmit raw data or regression coefficients, and to select the number of data involved in regression. The algorithms in the scheme can simultaneously explore the temporal and multivariate correlations among the sensory data. Theoretically and experimentally, it is concluded that the proposed algorithms can effectively exploit the correlations on the same sensor node and achieve significant reduction in data transmission. Furthermore, the algorithms perform consistently well even when multivariate stream data correlations are less obvious or non-stationary.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3