The Coupling Dynamic Analysis and Field Test of TBM Main System under Multipoint Impact Excitation

Author:

Huo Junzhou1,Wu Hanyang1,Li Guangqing1,Sun Wei1,Chen Jing2

Affiliation:

1. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China

2. School of Naval Architecture and Ocean Engineering, Dalian Ocean University, Dalian 116026, China

Abstract

Damage by excessive vibration is serious engineering problem in TBM boring process. Dynamic characteristic analysis is essential for TBM antivibration design. According to TBM horizontal support structure, a dynamic coupling nonlinear model is established, with consideration of time-varying impact load and multicomponent complex relationship from cutter to gripper shoe. A set of field vibration tests is set up to accurately collect data under extreme work conditions; then, field data is collected from Liaoning northwest engineering. Field data is applied to validate simulation model to make sure time-varying damping stiffness, support cylinder stiffness, and the TBM machine stiffness distribution are reasonable. Simulation indicates the weakest part of TBM in axial and torsional DOF is the cylinder hinge and the connection shaft between motor and pinion, and the horizontal and vertical weak parts are bull gear. It also shows that, in normal excavation conditions, the acceleration amplitude of the cutterhead in three directions ranges from 1.5 g to 2 g. These results provide theoretical basis for the antivibration design and structural optimization of TBM.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3