Capacity of Cone-Shaped Hollow Flexible Reinforced Concrete Foundation (CHFRF) in Sand under Horizontal Loading

Author:

Li Shanshan1ORCID,Zhang Yukun2,Li Dayong3ORCID

Affiliation:

1. Centre of Offshore Geotechnical Engineering, Weifang University, Weifang 261061, China

2. Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao 266590, China

3. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China

Abstract

The cone-shaped hollow flexible reinforced concrete foundation (CHFRF) is an innovative type of mountain wind turbine foundation, which outperforms the regular mountain wind turbine foundation in reducing the steel and concrete and protecting the surrounding vegetation for the cavity absorbs soil obtained from excavating the foundation pit. Moreover, the rubber layer installed between the wall of CHFRF and the surrounding ground increases foundation flexibility and releases the larger overturning moment induced by wind. The rubber layer is made of alternately laminated rubber and steel. The objectives of this research are to study the lateral bearing behaviors of the CHFRF under monotonic and cyclic lateral loading in sand by model tests and FEM simulations. The results reveal that the CHFRF rotates during loading; and, in the ultimate state, the rotation center is located at a depth of approximately 0.6–0.65 times the foundation height and is 0.15–0.18 times the diameter of the foundation away from its centerline as well. The lateral bearing capacity of the CHFRF improves with the increase of embedded depth and vertical load applied to the foundation. Moreover, compared to the CHFRF without the rubber layer, the rubber layer can reduce the earth pressure along the wall of CHFRF by 22% and decrease the deformed range of the soil surrounding the foundation, revealing that it can reduce the loads transferred to the surrounding soil for extending the service life of the foundation. However, the thickness and stiffness of the rubber layer are important factors influencing the lateral bearing capacity and the energy dissipation of the foundation. Moreover, it should be noted that the energy dissipation mainly comes from the steel of the rubber layer rather than rubber.

Funder

Weifang University Research Fund

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3