Effect of Phyto-Assisted Synthesis of Magnesium Oxide Nanoparticles (MgO-NPs) on Bacteria and the Root-Knot Nematode

Author:

Khan Azhar U.1,Khan Masudulla2,Khan Azmat Ali3,Parveen Aiman4,Ansari Sajid4,Alam Mahboob5ORCID

Affiliation:

1. School of Life and Basic Sciences, Department of Chemistry, SIILAS Jaipur National University, Jaipur 302017, Rajasthan, India

2. Botany Section, Women’s College, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India

3. Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

4. Department of Botany Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India

5. Department of Safety Engineering, Dongguk University, 123 Dongdae-ro, Gyeongju-si 780714, Gyeongsangbuk-do, Republic of Korea

Abstract

The root-knot nematode was examined using magnesium oxide nanoparticles (MgO-NPs) made from strawberries. The biologically synthesized MgO-NPs were characterized by UV, SEM, FTIR, EDS, TEM, and dynamic light scattering (DLS). Nanoparticles (NPs) were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and shown to be spherical to hexagonal nanoparticles with an average size of 100 nm. MgO-NPs were tested on the root-knot nematode M. incognita (Meloidogynidae) and the plant pathogenic bacteria Ralstonia solanacearum. The synthesized MgO-NPs showed a significant inhibition of R. solanacearum and the root-knot nematode. MgO-NPs cause mortality and inhibit egg hatching of second-stage juveniles (J2) of M. incognita under the in vitro assay. This study aims to examine the biological activity of biogenic MgO-NPs. The findings marked that MgO-NPs may be utilized to manage R. solanacearum and M. incognita and develop effective nematicides. In addition, the antioxidant capacity of MgO-NPs was determined by using 2, 2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH).

Funder

King Saud University

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3