Heat and Mass Transfer of the Darcy-Forchheimer Casson Hybrid Nanofluid Flow due to an Extending Curved Surface

Author:

Gohar 1,Khan Tahir Saeed1,Sene Ndolane2ORCID,Mouldi Abir3,Brahmia Ameni4

Affiliation:

1. Mathematics Department, University of Peshawar, Peshawar, Pakistan

2. Laboratoire Lmdan, Departement De Mathematiques De Decision, Facultíe des Sciences Economiques et Gestion, Universite Cheikh Anta Diop De Dakar, BP 5683 Dakar Fann, Senegal

3. Department of Industrial Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia

4. Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia

Abstract

The current paper describes a Darcy-Forchheimer flow of Casson hybrid nanofluid through an incessantly expanding curved surface. Darcy-Forchheimer influence expresses the viscous fluid flow in the porous medium. Carbon nanotubes (CNTs) with a cylindrical form and iron-oxide are utilized to make hybrid nanofluids. Using Karman’s scaling, the principal equations are rearranged to nondimensional ordinary differential equations. The “Homotopy analysis method” is used to further build up the analytic arrangement of modeled equations. The impact of flow variables on the velocity and temperature profiles has been tabulated and explained. The flow velocity is raised when both the curvature and volume fraction parameters are elevated. The temperature and velocity profiles exhibit the opposite tendency when the Forchheimer number is increased, since the fluid velocity decreases while the energy profile grows. The addition of CNTs and iron nanocomposites improves the thermophysical characteristics of the base fluid significantly. The obtained consequences show that hybrid nanofluids are more efficient to improve the heat transfer rate. Using CNTs and nanomaterials in the base fluid to control the coolant level in industrial equipment is a wonderful idea.

Funder

King Khalid University

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3