Affiliation:
1. Graduate Program in Materials Science and Engineering, Center of Technological Sciences, Santa Catarina State University, Joinville, SC 89.219-710, Brazil
Abstract
In this study, films of graphene oxide and chemically or thermally reduced graphene oxide were produced by a simple vacuum filtration method and submitted to a thorough characterization by X-ray diffraction (XRD), Raman and infrared spectroscopies, field-emission scanning electron microscopy, transmission electron microscopy, atomic force microscopy, confocal microscopy, and contact angle measurements. Graphene oxide (GO) was produced from graphite by the modified Hummers method and thereafter reduced with NaBH4 or by heating under argon in a tubular furnace. The films were produced from aqueous solutions by vacuum filtration on a cellulose membrane. Graphite presents two characteristic XRD peaks corresponding to d=0.34 nm and d=0.17 nm. After oxidation, only a peak at d=0.84 nm is found for powder GO, confirming the insertion of oxygen groups with an increase in the interplanar distance of graphene nanoplatelets. However, for GO films, other unexpected peaks are observed at d=0.63 nm, d=0.52 nm, and d=0.48 nm. After reduction, both chemical and thermal, the peak at 0.84 nm disappears, while those corresponding to interplanar distances of 0.63 nm, 0.52 nm, and 0.48 nm are still present. The other characterizations confirm the production and chemical composition of GO and reduced GO films. The results indicate the combination of crystalline regions with different interplanar distances, suggesting the ordering of graphene/graphene oxide intercalated sheets.
Funder
Foundation for Research and Innovation Support of the State of Santa Catarina
Subject
General Materials Science
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献