Abstract
Short-pulse, ultrahigh-intensity lasers have opened new regimes for studying fusion plasmas and creating novel ultrashort ion beams and neutron sources. Diagnosing the plasma in these experiments is important for optimizing the fusion yield but difficult due to the picosecond time scales, 10 s of micron-cubed volumes, and high densities. We propose to use the yields of photons and neutrons produced by parallel reactions involving the same reactants to diagnose the plasma conditions and predict the yields of specific reactions of interest. In this work, we focus on verifying the yield of the high-interest aneutronic proton-boron fusion reaction 11Bp,2α4He, which is difficult to measure directly due to the short stopping range of the produced αs in most materials. We identify promising photon-producing reactions for this purpose and compute the ratios of the photon yield to the α yield as a function of plasma parameters. In beam-fusion experiments, the 11C yield is an easily-measurable observable to verify the α yield. In light of our results, improving and extending measurements of the cross-sections for these parallel reactions are important steps to gain greater control over these laser-driven fusion plasmas.
Funder
National Science Foundation
Publisher
Cambridge University Press (CUP)
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献