Modified Screen-Printed Microchip for Potentiometric Detection of Terbinafine Drugs

Author:

El-Beshlawy Menna1,Arida Hassan2ORCID

Affiliation:

1. Department of Chemistry, Faculty of Women, Ain Shams University, Cairo, Egypt

2. Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Abstract

The development of miniaturized microchips has widespread and growing interest in manufacturing potentiometric sensors with extremely valuable modifying response characteristics. In this context, here, we demonstrate microfabrication, electrochemical evaluation, and analytical applications of disposable thin-film potentiometric microsensors responsive to terbinafine antifungal medication. Miniaturized microchips have been realized by integration of the sensitive layer membrane modified by carbon nanotubes onto the surface of the plastic screen-printed microchip support using a new approach, which has been recently developed. The sensitive membrane comprises terbinafine HCl: ammonium heptamolybdate complex ion pair as ionophore, o-nitrophenyl octyl ether as a solvent mediator, potassium tetrakis (4-chlorophenyl) borate as an anion excluder, and polyvinyl chloride as support. The microsensor based on this plasticised sensitive membrane provides the Nernstian response and covers a wide concentration range of terbinafine of 10−8–10−2 mole·L−1. The merits offered by the elaborated terbinafine microchip over the bulk-based electrode include reasonable sensitivity (58.5 mV/concentration decade), fast response time (∼30 s.), long-term stability (4 months), integration, and automation feasibility. Furthermore, microfabricated terbinafine chips were successfully applied to the measurements of the investigated medication in some real samples with high accuracy (96.9%) and precision (<3%).

Funder

Taif University

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3