In Silico Analysis of SNPs in PARK2 and PINK1 Genes That Potentially Cause Autosomal Recessive Parkinson Disease

Author:

Bakhit Yousuf Hasan Yousuf1ORCID,Ibrahim Mohamed Osama Mirghani2,Amin Mutaz3ORCID,Mirghani Yousra Abdelazim3,Hassan Mohamed Ahmed Salih4

Affiliation:

1. Department of Basic Medical Sciences, Faculty of Dentistry, University of Khartoum, Khartoum, Sudan

2. Department of Medical Biochemistry, Faculty of Medicine, Elrazi University, Khartoum, Sudan

3. Department of Medical Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan

4. Department of Biotechnology, Africa City of Technology, Khartoum, Sudan

Abstract

Introduction. Parkinson’s disease (PD) is a common neurodegenerative disorder. Mutations in PINK1 are the second most common agents causing autosomal recessive, early onset PD. We aimed to identify the pathogenic SNPs in PARK2 and PINK1 using in silico prediction software and their effect on the structure, function, and regulation of the proteins. Materials and Methods. We carried out in silico prediction of structural effect of each SNP using different bioinformatics tools to predict substitution influence on protein structure and function. Result. Twenty-one SNPs in PARK2 gene were found to affect transcription factor binding activity. 185 SNPs were found to affect splicing. Ten SNPs were found to affect the miRNA binding site. Two SNPs rs55961220 and rs56092260 affected the structure, function, and stability of Parkin protein. In PINK1 gene only one SNP (rs7349186) was found to affect the structure, function, and stability of the PINK1 protein. Ten SNPs were found to affect the microRNA binding site. Conclusion. Better understanding of Parkinson’s disease caused by mutations in PARK2 and PINK1 genes was achieved using in silico prediction. Further studies should be conducted with a special consideration of the ethnic diversity of the different populations.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Biochemistry, Genetics and Molecular Biology (miscellaneous),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3