Forecasting Ionospheric TEC Changes Associated with the December 2019 and June 2020 Solar Eclipses: A Comparative Analysis of OKSM, FFNN, and DeepAR Models

Author:

Mukesh R.1ORCID,Dass Sarat C.2ORCID,Gurmu Negash Lemma3ORCID,Vijay M.1ORCID,Kiruthiga S.4ORCID,Mythili S.5ORCID,Ratnam D. Venkata6ORCID,Indira Dutt V. B. S. Srilatha7ORCID

Affiliation:

1. Department of Aerospace Engineering, ACS College of Engineering, Bangalore, India

2. School of Mathematical & Computer Sciences, Heriot-Watt University Malaysia, Putrajaya, Malaysia

3. Department of Industrial Engineering, Ambo University, Ambo, Oromia, Ethiopia

4. Department of ECE, Saranathan College of Engineering, Trichy, India

5. Department of ECE, PSNA College of Engineering and Technology, Dindigul, India

6. Department of ECE, KL University, Guntur, Andhra Pradesh, India

7. Department of EECE, GITAM School of Technology, Visakhapatnam, India

Abstract

This paper presents forecast and investigation of the variation in ionospheric Total Electron Content (TEC) during the solar eclipses (SEs) of December 2019 and June 2020 using three different methods: Deep Autoregressive model (DeepAR), Feed-Forward Neural Network (FFNN), and Ordinary Kriging-based Surrogate Model (OKSM), and the TEC data predicted by DeepAR, FFNN, and OKSM were compared with the actual TEC during the observation days. The study was conducted based on GPS data taken from the IISC receiver located in Bangalore, India, during the SEs which happened on 26.12.2019 and 21.06.2020. The TEC data were examined to assess the effect of solar eclipses on TEC values. Eighty-day prior TEC data for the IISC station are gathered from IONOLAB servers along with the other parameter data like Dst, Ap, F10.7, and Kp taken from OMNIWEB servers which were used to predict TEC. The reliability of the forecasted results is evaluated using numerical factors like Normalized Root Mean Square Error (NRMSE), Correlation Coefficient (CC), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R-squared. The study demonstrates the usefulness of combining multiple methods for analyzing TEC variations during SEs and highlights the potential of OKSM, FFNN, and DeepAR models for studying TEC variation in the same context. The findings may be useful for satellite broadcasting and navigational services and for further research into the influence of solar eclipses on the TEC changes.

Funder

Visvesvaraya Technological University

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3