Singular Signal Measurement Based on Bidirectional Recursive Complex-Valued Wavelet Algorithm

Author:

Lv Weiping1ORCID,Xie Jinshan1,Huang Jing1

Affiliation:

1. College of Mathematics and Information Engineering, Longyan University, Longyan 364012, China

Abstract

The normal operation fault of the power system is usually caused by a short-circuit fault. At this time, the system changes drastically from one state to another, accompanied by complex transient phenomena. Therefore, the measured signal contains a large number of transient components. How to effectively analyze such signals, extract their characteristics, and develop new protection devices has always been an important research field in power system protection technology. The protection of the power system is to achieve the purpose of correct action and elimination of faults by quickly detecting and locating faults. At present, the power signal analysis tools used in microcomputer protection include FFT, Kalman filter, and finite impulse response filter. They are efficient for the analysis of stationary signals, but have their limitations in analyzing nonstationary signals; especially it is difficult to identify nonlinear faults, such as the detection of high-impedance nonlinear short-circuit faults, which is a long-term unsolved problem in power systems. Based on wavelet transform, this paper selects complex-valued wavelet algorithm, analyzes a real-time recursive wavelet algorithm, and deduces the realization process of the algorithm in detail. The algorithm greatly reduces the computational complexity of the existing two-way recursive algorithm, can be used for real-time detection of fault signals in various fields of power system, and can be extended to realize other fast recursive algorithms of wavelet functions. Based on the sensitivity of complex-valued wavelet transform phase information to singularity, a method for real-time monitoring of power system fault mutation signals using the phase information of complex-valued wavelet fast recursion algorithm to assist amplitude information is proposed. The validity and practicability of this complex-valued wavelet and its real-time recursive algorithm for fault detection are demonstrated by an example.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3